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Abstract—Linear frequency modulated continuous wave
(LFMCW) signals have been widely used in target detection and
localization, thanks to their good detection sensitivity and high
range resolution. However, estimation of the angle of arrival
(AOA) of the LFMCW signal reflected from each target in a
multi-target environment is still quite limited at present. In this
paper, we propose a novel AOA estimation framework in which
one transmitter antenna and two receiver antennas are employed
to transmit a wideband LFMCW signal and receive the signals
reflected from different targets, respectively. The signals received
at two receiver antennas are processed in three steps. First, each
of them is demodulated by mixing with the transmitted signal to
transform the wideband non-stationary signal into superposition
of a series of single-tone signals. Second, signals received at
each receiver antenna from different targets are separated using
bandpass filtering. Third, the corresponding AOA of each target
is estimated using the phase difference between two receiver
antennas. Different from the traditional subspace-based methods,
the number of targets is not limited by the number of receiver
antennas. The theoretical analysis and simulation results show
that the proposed algorithm can achieve accurate AOA estimation
for multiple targets even at a low signal to noise ratio.

Index Terms—Angle of arrival, AOA estimation, LFMCW,
multi-target detection, time-of-flight (TOF)

I. INTRODUCTION

TARGET detection and localization has been an active
research area due to its importance in a wide range of

applications including autonomous vehicle, vital signs detec-
tion [1], etc. Linear frequency modulated (LFM) signals are
often used in active detection systems due to their good target
detection sensitivity of low Doppler targets [2] and high range
resolution [3]. As a key component of target detection, angle
of arrival (AOA) estimation of LFM signals is of particular
importance and has received great attentions, especially with
the development of Internet of Things (IoT) in recent years.

The most widely used technique for the AOA estimation
is the subspace-based method, where the multiple signal clas-
sification (MUSIC) algorithm [4] serves perhaps as the best
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example. MUSIC generates signal subspaces and noise sub-
spaces from the eigen-decomposition on the autocorrelation
matrix and then obtains the AOA estimation via orthogonality
between the steering vectors and noise subspaces. To decrease
the computational complexity of the MUSIC algorithm, some
modified MUSIC algorithms have been proposed in recent
years through avoiding the eigen-decomposition or limiting
the range for spectral search [5]-[7]. Another well-known
subspace-based method is the estimation of signal parameters
via rotational invariance techniques (ESPRIT) algorithm [8],
which utilizes the rotational invariance property of the signal
subspace to accomplish the AOA estimation. The main ad-
vantage of the ESPRIT algorithm is that the beam scan is not
needed, thus reducing the computational complexity signifi-
cantly. However, these subspace-based methods are designed
for narrow-band stationary signals and therefore cannot be
applied directly to the LFM signals because they are non-
stationary signals whose instantaneous frequency varies with
time. Note that when the source signal is available, the mixed
signal between the reflected signal and source signal can
be stationary. Nevertheless, the subspace-based methods still
cannot be directly used since the frequency of the mixed signal
can be very different on different antennas.

To solve the problem, methods that combine the frac-
tional Fourier transform (FRFT) [9] and some conventional
subspace-based algorithms have been proposed [10], [11].
It has been found that the LFM signals can be regarded
as stationary signals in the fractional Fourier domain by
rotating the signal coordinates counterclockwisely, and thus
the conventional subspace-based algorithms can be applied.
Tao et al. proposed to combine FRFT and MUSIC algorithm
to estimate the AOA of the wideband LFM signals [12].
However, it is valid only for uncorrelated signals. The AOA
estimation for coherent LFM signals was proposed by Qu et
al. [13], where the forward/backward (FB) spatial smoothing
technique is combined with the FRFT technique. However,
this method reduced the array aperture, and thus the accuracy
was restricted. To avoid reducing the array aperture, Jin et al.
proposed to combine FRFT with the virtual array transform
[14]. An improved ESPRIT algorithm based on FRFT was
proposed in [15] for both coherent and non-coherent LFM
signals in a complex environment.

Another way to deal with non-stationary signals, especially
the narrow-band chirp signals, is the spatial-time-frequency
distribution (STFD) technique [16], [17]. The most widely
used tool for the spatial-time-frequency analysis is the Wigner
Ville distribution (WVD) technique. In [18], a WVD-based
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method was proposed, which extends the STFD concept to the
wideband case. However, this technique requires some prelim-
inary information about the source localization angular sectors
or initial direction-of-arrival (DOA) estimates1, which may
lead to a strongly-biased conclusion. Zhang et al. proposed
a spatial polarimetric time-frequency distributions (SPTFD)
algorithm [19], which extends STFD to utilize the source
polarization properties. The SPTFD algorithm allows the dis-
crimination of sources based on their respective DOA as well
as their polarization and time-frequency signal characteristics.
Note that the STFD-based methods suffer from cross-term
interference severely in the low signal-to-noise ration (SNR)
region under the multi-LFM signal condition, which results in
a performance degradation.

Some sophisticated techniques have also been utilized to
estimate the AOA. Ma and Goh proposed to use the ambiguity
function to convert the absolute time and frequency of the
chirp signals into relative time lag and frequency difference,
and then use conventional beamforming and MUSIC algo-
rithms to estimate the AOA [20]. However, the performance
decreases rapidly in low SNR conditions, especially when
the duration of signal is very short. The modal analysis
technique was utilized in [21] to generate the focusing matrices
for the wideband AOA estimation. It was shown that no
prior information except the array geometry is needed, which
demonstrates desirable properties and promising capabilities
of the modal analysis technique in preprocessing wideband
signals that are received at a sensor array. Daegu et al.
proposed to exploit the dual shift invariant structure in the time
and space domains for the AOA estimation [22], according to
which the AOA estimation of multiple targets can be achieved
with a two-channel frequency modulated continuous wave
(FMCW) radar. Generally, methods mentioned above require
a large array to guarantee the performance. However, such
an array is expensive and may not be available in many
scenarios, especially in indoor environments. In addition, when
the bandwidth of LFMCW signal is large [1], the data rate of
the signal increases rapidly, which makes the computational
complexity of most existing methods impractical. Thus, our
motivation is to propose an AOA estimation method with
only a few number of receiver antennas to achieve satisfactory
performance.

In this paper, we propose a novel multi-target AOA esti-
mation framework in which one transmitter antenna and two
receiver antennas are employed. Specifically, the transmit-
ter antenna transmits a wideband LFMCW signal. Through
propagation and reflection from targets, each receiver antenna
receives superposition of a series of attenuated and delayed
versions of the transmitted LFMCW signals, which is non-
stationary. We then propose to demodulate the received signals
by mixing with the transmitted LFMCW signals, which trans-
forms the received non-stationary signals into stationary ones.
Next, we separate the signals reflected from different targets
through bandpass filtering and estimate the AOA of each target
through the least square technique. Theoretic analysis shows

1In this paper, we use direction-of-arrival (DOA) and angle-of-arrival
(AOA) interchangeably.

Fig. 1: System model with one transmitter antenna and two
receiver antennas.

that the proposed algorithm can achieve an unbiased estimate
with a small variance. Some advantages of our proposed
framework are as follows:

• The number of targets of which the AOA can be estimated
is not limited by the number of receiver antennas. Two
receiver antennas are enough for estimating the AOA of
multiple targets.

• There is no upper frequency limit of signal which is
usually perplexed for the traditional antenna array design,
i.e., the space between antennas do not need to be smaller
than the half wavelength.

• The proposed framework can recognize targets even when
they are located at the same direction.

• Theoretic analysis and extensive simulation results show
that the proposed framework can achieve good perfor-
mance for estimating the AOAs of multiple targets even
when the SNR decreases to -30dB.

The paper is organized as follows. We describe the system
model in detail in Section II. The proposed AOA estimation
algorithm is presented in Section III. Section IV performs the
theoretic analysis of the proposed algorithm. In Section V, we
conduct multiple simulations to validate the proposed frame-
work under different settings. Finally, we introduce discussions
in Section VI and draw conclusions in Section VII.

II. SYSTEM MODEL

We consider a transceiver system with one transmitter
antenna and two receiver antennas as shown in Fig. 1. Note
that all antennas are mounted on the same device. The trans-
mitter antenna transmits an LFMCW signal and two receiver
antennas receive echoes reflected from targets so that the
AOAs of distinctive targets are estimated by processing the
received echoes.

Let s(t) denote the transmitted LFMCW signal, which can
be written as

s(t) = AT e
j(2πfmint+πkt

2), 0 ≤ t ≤ Tsweep, (1)

where AT , fmin, k, Tsweep denote the amplitude of the signal,
the starting frequency of frequency modulation, the frequency
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Fig. 2: An illustration of the transmitted signal and reflected
signal.

modulated slope, and the time duration of signal, respectively.
The instantaneous frequency of the LFMCW signal is

f =
1

2π

d(2πfmint+ πkt2)

dt
= fmin + kt. (2)

In our system, the transmitted signal will be received by the
receiver after propagation. Suppose that the signal received by
the receiver antennas is reflected by a specific reflector. Then,
the received signal can be expressed as

r0(t) = ARe
j(2πfmin(t−τ)+πk(t−τ)2), (3)

where AR and τ denote the reflected signal amplitude and the
time of flight (TOF), respectively. Comparing (1) and (3), we
can see that the received signal is a scaled and delayed version
of the transmitted signal.

According to [23], the amplitude AR can be expressed as

AR = AT
R
√
GTGR
d(t)α

, (4)

where R denotes the reflection coefficient which is determined
by the radar cross section (RCS) of the reflector, GT and
GR denote the gain of transmitter and receiver antennas,
respectively, d(t) denotes the propagation distance from the
transmitter to the reflector and back to the receiver, α is the
attenuation coefficient which is determined by the environment
of propagation.

The time of flight τ is given by

τ =
d(t)

c
, (5)

where c is the velocity of light in the space.
As shown in Fig. 1, the received signal is the superposition

of a series of signals from different reflectors perturbed by
the noise of the receiver. Under the assumption that signals
scattering and reflecting from unsmooth surface of the same
reflector are merged together because of the limited bandwidth,
the aggregated signal r(t) can be written as

r(t) =
N∑
i=1

ARie
j(2πfmin(t−τi)+πk(t−τi)2) + w(t), (6)

where N is the number of reflectors, i denotes the index of
the ith path of propagation and w(t) is the zero-mean additive
complex white Gaussian noise at the receiver with variance σ2

0 .

III. THE PROPOSED AOA ESTIMATION ALGORITHM

In this section, we describe the proposed AOA estimation
algorithm in detail. There are mainly three steps involved in
the proposed algorithm. First, the received signal is demod-
ulated by mixing with the transmitted signal to transform
the wideband non-stationary signal into superposition of a
series of single-tone signals. Second, the number of reflectors
is determined using hypothesis tests. Third, signals from
different reflectors are separated using bandpass filtering and
the corresponding AOA of each reflector is estimated using
the phase difference between two receiver antennas.

A. Preprocessing of the received signal

LFMCW signal is a wideband non-stationary signal. Com-
pared to the transmitted signal, the received signal is attenuated
on amplitude and delayed in time. The frequency relation
between the transmitted signal and received signal is shown
in Fig. 2. By utilizing the time delay characteristic of the
received signal, we can mix the received signal with the
transmitted signal to extract the information about the reflector.
Specifically, the mixed signal can be written as

sd(t)=s(t)r
∗(t)=

N∑
i=1

ATARie
j(2πfminτi+2πktτi−πkτ2

i )

+AT e
j(2πfmint+πkt

2)w∗(t).

(7)

The first part in (7) corresponds to the signal that is the
superposition of a series of single-tone signals from different
reflectors. In this paper, we assume that the distances of re-
flectors are different. The frequency of this signal corresponds
to the TOF, which is determined by the distance from the
transmitter to a reflector and back to the receiver. In other
words, the signals reflected from a specific distance have the
same frequency and the signals reflected from different dis-
tances have different frequencies [24][25]. Note that although
the Doppler shift will affect the frequency of the received
signal, when the frequency slope of the LFMCW signal is
high, the effect of the Doppler shift is negligible. In such
a case, bandpass filter can be used to separate the signals
from reflectors at different distances. The second part in (7)
corresponds to the cross-term of signal and noise. The mixing
process transforms the wideband non-stationary signals into
stationary signals with a single frequency, due to which we
can use classic signal processing techniques such as DFT to
extract the information of the signal.

In practice, the received signal is sampled by an A/D
converter to obtain its discrete version as follows:

sd(mTs) =

N∑
i=1

ATARie
j(2πfminτi+2πkmTsτi−πkτ2

i )

+AT e
j(2πfminmTs+πk(mTs)

2)w∗(mTs),

(8)

where Ts denotes the sampling interval.

B. Determining the number of reflectors

The number of reflectors is an essential prior information
for the AOA estimation. According to (8), the received signal
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after mixing is a series of single-tone signals with different
frequencies, which correspond to the distances between the
transceiver and reflectors. By assuming that different reflectors
have different distances2, the number of reflectors can be
estimated in the frequency domain. To this end, we perform
DFT over one period of the frequency sweep and then use
some hypothesis tests to determine the number of reflectors.
According to (8), the mixed signal can be divided into two
parts as follows

sd(mTs) = y(mTs) + z(mTs), (9)

where

y(mTs) =
N∑
i=1

ATARie
j(2πfminτi+2πkmTsτi−πkτi2), (10)

and

z(mTs) = AT e
j(2πfminmTs+πk(mTs)

2)w∗(mTs). (11)

With the linearity of DFT, we can perform DFT on two
parts separately. The DFT of y(m) is given by

Y [k] =
M∑
m=1

y(m)e−j
2π
M km =

M∑
m=1

N∑
i=1

ATARie
iϕim

y ,

=

M∑
m=1

N∑
i=1

ATARi(cosϕ
im
y + j sinϕimy ), (12)

with ϕimy being defined as

ϕimy = 2πfminτi + 2πkTsτim− πkτi
2 − 2πkm/M.

The w(mTS) is assumed to be a white complex Gaussian
noise, which can be written as

w(mTS) = wR(mTS) + jwI(mTS), (13)

where wR and wI are independent Gaussian noise. The DFT
of z(mTS) can thus be expressed as

Z[k] =
M∑
m=1

[wR(mTs)AT e
jφm

z + jwI(mTs)AT e
jφm

z ],

=
M∑
m=1

[wR(mTs)AT cos(φmz )− wI(mTs)AT sin(φmz )]

+ j

M∑
m=1

[wR(mTs)AT sin(φ
m
z ) + wI(mTs)AT cos(φ

m
z )],

(14)

with φmz being defined as

φmz = 2πfminmTs + πk(mTs)
2 − 2πkm/M. (15)

The DFT Sd[k] of the signal sd(mTS) is superposition of
the DFTs of y(mTS) and z(mTS) as follows

Sd[k] = Y [k] + Z[k]. (16)

2In this paper, we use reflector and target interchangeably.

Algorithm 1 Determining the number of reflectors
1: Estimate the noise variance σ2

2: Mix the received signal r(m) with the transmitted s(m)
signal

3: Perform FFT on one duration Tsweep of the mixed signal
sd(t)

4: Calculate the conditional probability p(A|H0) and
p(A|H1)

5: Determine the optimal threshold η0
6: Estimate the number of reflectors using η0 and L(A)

Then, let us define H0 and H1 as the hypothesis that there
is no reflector and the hypothesis that there is a reflector,
respectively, as below

H0 : A[k] = |Sd[k]| = |Z[k]|,
H1 : A[k] = |Sd[k]| = |Y [k] + Z[k]|. (17)

Then, a threshold detector can be designed, where the per-
formance can be described using the probability of detection
PD and probability of false alarm PF defined as

PD = P (A[k] > A0|H1),

PF = P (A[k] > A0|H0).
(18)

where A0 is the threshold.
According to the expression of Z[k] in (14), the real and

imaginary parts of Z[k] are the superposition of M identical
independent Gaussian variables with zero mean and variance
σ2. Thus, the real and imaginary parts of Z[k] obeys Gaussian
distribution with zero mean and variance Mσ2. As such, the
amplitude of Z[k] obeys Raleigh distribution as

p(A[k]|H0) =
1

2MA2
Tσ

2
e

−A[k]

2MA2
T

σ2
. (19)

According to (12), (14), and (16), Sd[k] is the superposition
of a determined signal Y [k] and random noise Z[k]. Therefore,
the real and imaginary parts of Sd[k] obey Gaussian distribu-
tion with the same variance but different means. In such a
case, the amplitude of Sd[k] obeys Rice distribution as [26]

p(A[k]|H1) =
A[k]e

− A2+µ2

2MA2
T

σ2

MA2
Tσ

2
I0(

A[k]µ

MA2
Tσ

2
). (20)

where I0 denotes the modified Bessel function of zero order
and µ the expectation of the square root of the real and
imaginary parts of Z[k].

To determine the number of reflectors without the prior
information of H1 and H0, Neyman-Pearson criterion is used.
Specifically, the likelihood ratio function can be expressed as

L(A[k]) =
p(A[k]|H1)

p(A[k]|H0)
, (21)

where L(A[k]) is compared with a threshold η0 which is
determined by false alarm probability PF to determine the
hypothesis.
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Fig. 3: The structures of the two receiver antennas

C. Estimating the AOA

After determining the number of the reflectors, the signal
from a specific reflector can be separated through bandpass
filtering. In this section, to simplify the analysis, we assume
that an ideal bandpass filter is performed, i.e., it does not affect
the amplitude and phase of the signal. The effects of a practical
filter will be discussed in detail in the simulation section.

As shown in Fig. 3, we only use two receiver antennas
to estimate the AOA. This is different from the traditional
methods that generally require the number of receiver antennas
to be greater than the number of reflectors. According to the
geometric relation shown in Fig. 3, the TOF of the signal from
the same reflector on two receiver antennas is different. Thus,
the signal obtained after bandpass filtering can be expressed
as

s1d(t) = ATARie
j(2πfminτ1i+2πktτ1i−πkτ2

1i) + n1(t),

s2d(t) = ATARie
j(2πfminτ2i+2πktτ2i−πkτ2

2i) + n2(t),
(22)

where τ1i and τ2i denote the TOF of the signal for two receiver
antennas from the ith reflector, n1(t) and n2(t) denote the
white Gaussian noise after bandpass filtering.

The complex white Gaussian noise w(t) at the receiver is
assumed to distribute uniformly in the frequency domain. The
bandwidth of Gaussian noise after filtering is determined by
the bandwidth of the filter, and thus the relation between w(t)
and n(t) is given by

E[n(t)] = E[w(t)] = 0,

D[n(t)] =
D[w(t)]

W
, (23)

where W is the bandwidth of the bandpass filter which is
used for filtering the signal from a specific reflector. E[n(t)]
and D[n(t)] denote the mean and variance of the noise,
respectively.

According to (22), the difference between the phases of the
filtered signal on two receiver antennas can be written as

ψ(t) = 2πfmin(τ2i − τ1i) + 2πkt(τ2i − τ1i)

−πk(τ22i − τ21i) + v2(t)− v1(t), (24)

where v2(t) and v1(t) denote the phase noise. The properties
of v(t) will be discussed in detail in next section.

According to the geometric relation of two receiver antennas
shown in Fig.3, we have

τ2 − τ1 =
dsinθ

c
. (25)

Substitute (25) into (24), ψ(t) can be re-written as

ψ(t) = 2πk
dsinθ

c
t+ 2πfmin

dsinθ

c

−πkdsinθ
c

(
dsinθ

c
+ 2τ1i) + v2(t)− v1(t). (26)

In the absence of the noise, ϕ(t) is linear in time t, and the
slope is given by

kψ = 2πk
dsinθ

c
. (27)

From (27), we can see that kψ is a function of sin θ, which
means that we can use kϕ to obtain θ. This is because the
frequency of the received signal is a linear function of the
TOF, and the frequencies of the signals from the same reflector
on two receiver antennas are different, which make the phase
difference be a linear function of time t. The frequency
difference is determined by the TOF difference of the signal
on two receiver antennas which is a linear function of sin θ.
As a result, the slope of phase difference is a function of θ.

With (27), the AOA can be estimated as

θ = arcsin(
kψc

2πkd
). (28)

In practice, with the presence of noise, ϕ(t) is not strictly
linear in t. To extract kψ from the phase difference which is
perturbed by noise, we use the least square method to fit the
phase difference. According to (26), the phase difference in
the discrete form is given by

ψ[n] = 2πk
dsinθ

c
nTs + 2πfmin

dsinθ

c

− πk
dsinθ

c
(
dsinθ

c
+ 2τ1i) + v2[n]− v1[n].(29)

With (29), the least square estimate of kψ can be derived
as

kψ =

N(
N∑
i=1

tiψ[i])− (
N∑
i=1

ti
N∑
i=1

ψ[i])

N(
N∑
i=1

ti
2)− (

N∑
i=1

ti)2
, (30)

where ti = iTs, tN = NTs = Tsweep, Ts is the sampling
period, and Tsweep is the sweep duration of the LFMCW
signal.

IV. PERFORMANCE ANALYSIS

In the proposed method, targets are assumed to be located
with different distances. Thus, signal from different targets can
be separated using bandpass filtering. According to [27], the
range resolution can be expressed as

Range Resolution =
c

2B
, (31)

where B and c denote the bandwidth of the transmitted
LFMCW signal and the speed of the light, respectively. Note
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Algorithm 2 Estimation the AOA
1: Load the number of reflectors and the corresponding

center frequency
2: Determine parameters of the bandpass filter and filter the

corresponding signals on the two antennas
3: Subtract the angle of the signals on the two antennas
4: Fit the ψ using the least square method
5: Estimate the AOA using equation (29)
6: Repeat 2 until AOA of all reflectors has been estimated

that the bandwidth W in section III denotes the bandwidth of
the bandpass filter, which is much smaller than B. To separate
signal from different targets, the distance difference of targets
should be larger than the range resolution.

To derive the mean and variance of kϕ, we simplify the
expression of (30) as follows

kψ =

N∑
i=1

ψ[i](Nti −
N∑
j=1

tj)

N(
N∑
i=1

ti
2)− (

N∑
i=1

ti)2
. (32)

According to the above equation, the expectation and vari-
ance of kϕ can be obtained as

E(kψ) =

N∑
i=1

E[ψ[i]](Nti −
N∑
j=1

tj)

N(
N∑
i=1

ti
2)− (

N∑
i=1

ti)2
, (33)

and

D(kψ) =

N∑
i=1

D[ψ[i]](Nti −
N∑
j=1

tj)
2

[
N(

∑N
i=1 t

2
i )− (

∑N
i=1 ti)

2
]2 . (34)

To compute E(ψ[i]) and D(ψ[i]) in (33) and (34), we first
derive the probability density function of ψ[i]. Let us define
Ω as

Ω = ρ− ρ sin θ − ρ cos(ϕ− ψ) cos θ, (35)

where ϕ is the ideal phase difference in the absence of noise,
ψ is the actual phase difference in the presence of noise as
in (29), ρ = (ARlATl)

2/σ2
l is the signal to noise ratio after

bandpass filtering, ARlATl is the amplitude of mixed signal
after bandpass filtering, and σ2

l is the power of narrow band
Gaussian noise.

According to (23), ρ is determined by the signal to noise
ratio of the receiver and the bandwidth of the bandpass filter,
which can be written as

ρ =
SNR · fs

W
, (36)

where SNR denotes the signal to noise ratio at the receiver,
W is the bandwidth of the filter, and fs is the sampling rate
of received signal.

Then, according to [28], the probability density function of
ψ[i] is

p(ψ[i]) =
1

4π

∫ π/2

−π/2
e−Ω(1 + 2ρ− Ω) cos θdθ. (37)

Fig. 4: The probability function of ψ[i] when ϕ = π/4 and
ϕ = −π/2
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Fig. 5: E(ψ[i]) versus ρ under different ϕ values.

The integration in (37) is generally difficult to compute, due
to which there is no closed-form expression of E(ψ[i]) and
D(ψ[i]). Nevertheless, when ρ and ϕ are given, the integration
in (37) can be calculated numerically and thus E(ψ[i]) and
D(ψ[i]) can be derived. The probability density function of
ψ[i] when ϕ = π/4 and ϕ = −π/2 is shown in Fig. 4. It can
be seen from the figure that ψ[i] will be more concentrated
around ϕ with the increase of ρ. We also illustrate in Fig.
5 the relationship between E[ψ] and ρ when ϕ = π/6, π/4,
π/2 and 2π/3, respectively. It can be seen from the figure that
E(ψ[i]) approaches to ϕ with the increase of ρ. According
to (36), the value of ρ is usually large as the bandwidth of
the bandpass filter is typically small. Therefore, E(ψ[i]) is
generally an unbiased estimation of ϕ, and thus kϕ is also an
unbiased estimation.

According to the central limit theorem, kϕ can be approxi-
mated as a Gaussian distribution. Fig. 6 shows the relationship
between D(ψ[i]) and ρ when ϕ = π/6, π/4, π/2 and 2π/3,
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Fig. 6: D(ψ[i]) versus ρ under different ϕ values.

Fig. 7: The locations of different targets.

respectively. It can be seen from the figure that D(ψ[i])
approaches to zero with the increase of ρ. Fig. 6 also shows
that when ρ is large, D(ψ[i]) can be approximated as a
constant even for different ϕ. Since ρ is generally large, we
approximate D(ψ[i]) as a constant D(ψ[i]) = Dψ for all i.
Then, the variance of kϕ can be expressed as

D[kϕ] =

Dψ

N∑
i=1

(Nti −
N∑
j=1

tj)
2

[
N(

∑N
i=1 t

2
i )− (

∑N
i=1 ti)

2
]2 . (38)

According to (38), we can see that D[kψ] is a decreasing
function of the number of samples N . Thus, we can increase
the sampling rate to improve the accuracy the estimation.
From the discussions above, it can be seen that the estimation
accuracy is determined by two factors: the signal to noise ratio
after bandpass filtering, ρ, which is determined by the SNR
of the receiver and the bandwidth of the bandpass filter, and
the number of samples N . With the increase of ρ and/or N ,
the estimation accuracy can be improved.
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Fig. 8: The ROC curve of determining the number of reflector

V. NUMERICAL SIMULATIONS

In this section, we conduct a series of simulations to validate
the effectiveness of the proposed algorithm. The starting
frequency fmin and the period of the signal Tsweep are set to
be 5GHz and 2.5ms, respectively. The signal is received by two
parallel antennas with spacing of 0.04m. The signal to noise
ratio at the receiver antenna is defined as SNR = A2

R/σ
2
0 . The

performance of estimation is evaluated using the root mean
square error (RMSE) defined as

RMSE =

√√√√ 1

L

L∑
i=1

|θ̂ − θ)|2, (39)

where θ̂ denotes the estimated value of AOA and θ is the
true value of AOA. Some of the locations of targets in our
simulations are shown in Fig. 7. Two receiver antennas are
assumed to locate in [0,0]m and [0,-0.04]m, respectively.
Targets distribute in the second quadrant so that θ varies from
0 to π/2.

A. Determining the number of targets

To verify the effectiveness of the algorithm proposed in
Section III which determines the number of targets, the prob-
ability of false alarm PF and the probability of detection PD
is calculated, and the ROC curve, i.e., Pd versus Pfa, for SNR
varying from -70dB to -50dB with stepsize of 5dB is plotted
in Fig. 8. As shown in the figure, the proposed method has a
good performance even with very low SNR.

B. Single target with bandwidth 1.5GHz

In this subsection, we consider single target scenario, where
the target locates at [−2.5

√
3, 2.5]m. The SNR is assumed to

vary from -30dB to 30dB with a stepsize of 5dB. According
to the discussions in section III, the frequency of the mixed
received signal is proportional to the distance of the reflector.
Since the distance of reflector d(t) is smaller than 17.5m in
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Fig. 10: RMSE of MUSIC algorithm and proposed algorithm.

this case, the sampling rate of the mixed received signal is set
to be 140kHz which can satisfy the Nyquist sampling criteria.
The signal is filtered using an FIR bandpass filter with the
pass-bandwidth of 4kHz.

In our theoretic derivation, we assume that the bandpass
filter is ideal which will not affect the phase difference of the
signal. However, ψ[i] will be perturbed by the practical filter
in the filtering process. Fig. 9 shows the phase difference of
the signal on the two receiver antennas. It can be seen that
approximately 1/5 of the data is perturbed which is marked
with red. To ensure the accuracy of the least square fitting, we
only use the rest part of the data to fit kψ . The length of the
perturbed data is determined by the order of the filter, which
is known.

From Fig. 9, we can see that the phase difference oscillates
among [−2π, 2π] which is not consistent with our theoretical
analysis. That is because (24) is the unwrapped phase differ-
ence of the signal on the two receiver antennas. The phase of
each signal lies in [−π, π] in practice. As a result, ψ[i] lies in
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Fig. 11: Distribution of the estimated AOA using MUSIC and
proposed algorithm.
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Fig. 12: RMSE of proposed algorithm and Ambiguity based
algorithm[20].

[−2π, 2π]. In general, ψ can be expressed as

ψ[i] = (2πfminτ1i + 2πktτ1i − πkτ21i) mod (2π)

− (2πfminτ2i + 2πktτ2i − πkτ22i) mod (2π). (40)

Due to the mod(2π) operation, the value of ψ[i] oscillates.
However, we can see from Fig. 9 that the slope of ψ[i] is not
affected. Therefore, we divide the data into two parts based on
whether it is greater than 0 or not, and then fit each part using
least square method to estimate the slope. Finally, we average
the result to determine kψ . It can be seen from the Fig. 10 that
the proposed algorithm can achieve very high accuracy even
when SNR drops to -30dB.

According to (7), the mixed signal is the superposition
of a series of single-tone signals. As a result, it seems that
AOA of the mixed signal can be estimated using traditional
methods such as MUSIC. However, due to the linear-frequency
characteristic of LFMCW signal, according to (7), the mixed
signals on two receiver antennas are different, which makes an
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Fig. 13: Distribution of the estimated AOA using proposed
algorithm and Ambiguity based algorithm[20].

estimation bias when using the MUSIC algorithm. Thus, we
first compare the proposed method with the MUSIC algorithm.
A uniform 8 antennas linear array with an internal spacing of
0.04m is used for the MUSIC algorithm. The performance
comparison is shown in Fig. 10. The estimated AOA of the
proposed method and the MUSIC algorithm is shown in Fig.
11. We can see that the proposed method can achieve good
performance even with very low SNR, and the performance
improves as the SNR increases. With 8 antennas, the MUSIC
algorithm can achieve robust estimation even when SNR
drops to -30dB, however, the estimation error of the MUSIC
algorithm is about 5◦ even with a high SNR, which is caused
by the frequency difference of signals on different antennas.

We then compare the performance of the proposed method
with the incoherent wideband chirp DOA estimation (BCD-I)
in [20], which is based on the ambiguity function and MUSIC
algorithm. The RMSE of two methods are shown in Fig. 12.
The estimated AOA of the proposed method and the ambiguity
function based method is shown in Fig. 13 We can see that the
ambiguity function based method can achieve high accuracy
only when SNR is very high. When SNR is lower than 60dB,
the performance degrades rapidly. That is because the average
output SNR of ambiguity function is given by [20]

SNRam ≈ Tsweep
2

SNR2
0

2SNR0 + 1
, (41)

where SNR0 denotes the SNR of the received signal.
From (41), we can see that the SNRam is determined by

Tsweep and SNR0. With a very small Tsweep in our case, the
method in [20] requires very high SNR0 to achieve accurate
AOA estimation. That is mainly because the method based
on ambiguity function is designed for sonar signal processing,
of which the Tsweep is much larger. Thus, although we have
verified the effectiveness of the ambiguity function based
method when using parameters for sonar systems, it is not
suitable for microwave signal. On the other hand, with the
proposed method, the AOA estimation can be very accurate
even at very low SNR region.
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bandwidth.
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Fig. 15: Distribution of the estimated AOA for one target
located at 5m away when the SNR is 0dB.

C. Single target with bandwidth varying from 500MHz to
2GHz

To evaluate the performance of the proposed algorithm
under different bandwidth, we conduct simulations using d-
ifferent bandwidth with the same sweep time. The target is
assumed to locate at [−2.5

√
3, 2.5]m, while the bandwidth

of signal is set to be 500MHz, 1GHz, 1.5GHz, and 2GHz
respectively. The SNR varies from -10dB to 30dB with a
stepsize of 5dB.

The RMSE performance of the estimation is shown in Fig.
14. From the figure, we can observe that the RMSE decreases
as the bandwidth increases. With 500MHz bandwidth, the
RMSE is smaller than 3 degree when the SNR=0dB, and the
RMSE reduces to below 1 degree when the SNR=10dB. As the
bandwidth increases, the RMSE is smaller than 1 degree even
when the SNR=-10dB, which shows the effectiveness of the
proposed algorithm. The distribution of the estimated points
and trues points is illustrated in Fig. 15. The figure shows that
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Fig. 16: RMSE of Case I where two targets located at 5m
away and 8m away, respectively.

the estimated points have larger deviation when the bandwidth
is small. It is because when bandwidth is low, the frequency
difference of the mixed received signal is small. As a result,
the slope of the phase difference would be too small and thus
easy to be perturbed by the noise.

D. Multiple targets with bandwidth 1.5GHz
Different from the subspace-based methods, the capability

of the proposed algorithm in detecting the number of targets
is not limited by the number of receiver antennas. To validate
capability of the proposed algorithm in estimating the AOA for
multiple targets simultaneously, we conduct simulations under
the following three settings:

1) Case I: Two targets locate at [−2.5
√
3, 2.5]m and

[−4
√
2, 4

√
2]m, respectively.

2) Case II: Five targets locate at [−2.5
√
3, 2.5]m,

[−4
√
2, 4

√
2]m [−5

√
3, 5]m, [0, 12]m, and [−7.5, 7.5

√
3]m,

respectively.
3) Case III: Two targets locate at [22.5

√
3, 22.5]m and

[25
√
2, 25

√
2]m, respectively.

The RMSE performance of Case I is shown in Fig. 16. It
can be seen from the figure that the AOA estimation of the
target closer to the transmitter has higher accuracy than that
of the further one. This is mainly because the power of signal
from the closer one is much larger than that of the further one.
As a result, signals from the further one are affected more
significantly by noise than the closer one, which decreases the
accuracy of the AOA estimation.

The results of Case II where the AOA of five different
targets are estimated simultaneously are illustrated in Fig. 17.
The figure shows that even with only two receiver antennas,
the proposed algorithm can still have very high estimation
accuracy for all five targets. With 0dB SNR, the RMSE of
all five targets is smaller than 1 degree. Also, the estimation
accuracy of further targets is again lower than those of closer
ones. The corresponding distribution of the estimation is
illustrated in Fig. 18. We can see that the estimation for the
furthest target deviates much greater than other targets.
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Fig. 17: RMSE of Case II.
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Fig. 18: Distribution of AOA estimation for Case II when SNR
is -10dB.

For all simulations discussed above, targets are considered
to be located in near field. In Case III, we consider the scenario
where two targets are located in far field with distance of 45m
and 50m to the transmitter, respectively. The results are shown
in Fig. 19. We can see that even with the far field scenario, the
proposed algorithm can still achieve high estimation accuracy
for both targets.

E. The impact of the number of antennas

The proposed method can achieve accurate AOA estimation
using only two receiver antennas. Similar to traditional meth-
ods, we can further improve the performance of the proposed
method by increasing the number of receiver antennas. To
verify the effectiveness of the proposed method, we increase
the number of receiver antennas and the performance is
shown in Fig. 20. The estimated AOA using multiple receiver
antennas is the average of estimation of the pairs of adjacent
receiver antennas in the array. As shown in the figure, the
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Fig. 19: RMSE of Case III.
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Fig. 20: RMSE of proposed algorithm with multi antennas.

performance of the proposed method can be further improved
by increasing the number of receiver antennas.

VI. DISCUSSIONS

According to the definition of ultra-wideband (UWB), the
wideband LFCMW signal considered in the paper can be
regarded as one kind of UWB signals. The main difference
between the proposed scheme and most UWB techniques is
that most UWB techniques utilize the pulse signal while we
consider the continuous LFCMW signal. To show the advan-
tages of the proposed scheme, we illustrate the comparison
between the proposed scheme and the pulse-based UWB tech-
nique in Table I according to [30]. The hardware complexity
of both systems are similar. With the same bandwidth, the
proposed scheme could achieve better accuracy and larger
range since the signal is transmitted continuously which could
effectively improve the SNR. Pulse-based UWB technique
performs better when tracking moving targets benefiting from
the high pulse repetition frequency [30].

Category Proposed Scheme Pulse-based UWB
Accuracy X
Hardware Complexity - -
Maximum Range X
Track moving targets X

TABLE I: The comparison between the proposed scheme and
pulse-based UWB [30].

VII. CONCLUSION

In this paper, we have proposed a novel framework for
estimating the AOA of multiple targets using wideband LFM-
CW signal with only two receiver antennas. The proposed
framework involves a preprocessing step to transform the
wideband non-stationary signal into superposition of a series
of single-tone signals. Signals reflected from different targets
are separated using corresponding bandpass filters. Then the
AOA of each target is estimated using the phase difference on
the two receiver antennas. Theoretical analysis and simulation
results demonstrate that the proposed framework can achieve
accurate AOA estimation for multiple targets even at low SNR.
Note that with two receiver antennas, the proposed method can
only estimate the conic angle. However, with three receiver
antennas, the proposed method can estimate both the azimuth
and elevation angles.
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